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byae LES model of 11%.

wind tunnel test chamber. The reason is that the wind tunnel is made not following the usual design pro-
is more prioritizes the design of the test chamber and other parts. The turbulence model
used is the k-€ model, k-tvo model, RSM model, S
the lowest test room turbulence intensity given by the k-€ model which is 0.8% while the highest is given

model, and LES model. The simulation results give

© 2020 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.orgflicenses/

by-nc-ndj4.0{).

1. Introduction

Wind tunnels are useful in understanding the theory of aerody-
namics, fluid flow characters, and turbulence, which ultimately
leads to product optimization. Along with the increasing need for
test data, the differentiation of the field of technology engineering,
and the increasing size of test samples, wind tunnels continue to be
developed and modified both open-loop and closed-loop types to
become new and ideal wind tunnels so that they can meet the
needs of laboratory testing | 1].

Optimization of subsonic wind tunnel design was carried out in
previous studies [2-4], but it needs to be reviewed before it is
made. Particularly the distribution of fluid flow in the test chamber
is important to get an idea of how much laminar flow can occur,
which part of the test room is possible fluctuations in airflow
which will affect the airflow around the test object later. The CFD
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(computational fluid dynamic) method has become the main
choice to be used to explore the shape and character of fluid flow,
as in a wind tunnel. Thus the picture obtained will be closer to the
real condition, errors that arise from modeling also become smaller
and can be tolerated.

The intensity of turbulence, the distribution pattern of fluid
flow, velocity and pressure distribution, etc. can be obtained from
the tl_a.llence models contained in the CFD method. The turbu-
lence models include the k-e model with several adjustments,
the k-w model, the Spalart-Allmaras model, the LES model, the
R5M model, and several other models that are still being developed
to get the shape closer to the real conditions. So in this study, the
turbulence models are combined to obtain a detailed position or
area in the wind tunnel that produces laminar flow potential, espe-
cially in the test chamber. How big is the intensity of turbulence
that is possible and the width of the area that has a uniform wind
speed and is laminar, As ch as possible the area does not expe-
rience fluctuations in air fow,

The k-& model purposed is to predict airflow away fi wall or
surface [5,6] because this model calculates factor turbulence
kinetic energy kand dissipation energy&. The k-g¢ turbulence
model has been used in simulating the distribution and relations
of air flowing in the presence of buildings | 7,8] but by modeling
based on RNG and Launder-Kato modeling |9]. Another result is

2090-4479(© 2020 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University.
This is an open access article under the CC BY-NC-ND license {http:{/creativecommons org/lice nses/by-nc-nd/4.0/).

Please cite

icle as: .zz Ismail, . John, E. A. Pane et al., Computational fluid dynarrﬁcs simulation of the turbulence models in the tested section on
wind tunnel, Ain Shams Engineering Journal, https://datorg/ 10,101 6/.256]2020.02.012




2 Ismail et al./Ain Shams Engineering Journal xxx {xxoo) xax

the emergence of separate airflow and secondary airflow (sec-
ondary flow motion). Due to predict airflow nearest the wall or sur-
face, the k- model is implemented. This model calculate
freestream value wy makes it sensitive to the flow near the wall
or surface [10].

To anticipate changes in pressure that might occur in wind
trough, the RSM model is used. The RSM model calculates the
pressure-strain of each unit in all directions and compared as the
rate of velocity change, convection, production, dissipation, redis-
tribution of vortex flow [11,12] also the presence of separation-
flow due to boundary layer collision [13]. Even though, the RSMs
model is based on transport equations iy and & so it has a lack
in some ways but the RMS model is feasible for asymmetric turbu-
lence phenomena [14]|. The SST k-to model approach is used
because of its sensitivity to the area near the wall due to the
pressure-stress of airflow fluctuation, as well as the changing effect
of velocity and temperature [ 15].

In addition to studying the pattern of pressure distribution,
velocity and temperature due to transient flow, there is still a study
of turbulence models, namely the LES model. LES has advantages in
modeling turbulence at high Reynolds numbers and being a com-
parative material for other models [16]. Furthermore, simulating
examples of flow collisions that occur in the comhusti:ammber.
in the models contained in the Scale Subgrid method such as the
Smagorinsky model form, Dynamic Smagorinsky, WALE model
and turbulent kinetic energy subgrid model [17].

In the first example of this study, it was explained that the
design flow was changed, not following the existing design meth-
ods, except by designing the test chamber first [2|. The size and
shape of the test chamber are made maximum so that it can pro-
vide test models to a definite size. While other spaces are accord
with the remaining size of available space, consequently the ratio
of contraction space and diffusion space may not be standard. In
other words, the contraction and diffusion area may not have ideal
turbulence levels.

In general, in addition to testing existing wind tunnel designs,
this study also examined the distribution of fluid velocity, pressure,
and intensity of §lbulence in wind tunnels using five different tur-
bulence models to determine the exact position of the optimal test
sample, an area in the space test that is not affected by fluctuations
in velocity and fluid pressure. To improve the results o1e study
in this CFD method, various turbulence models, such as k-e model,
-0 model, RSMs model, SSTar.u and the LES model was utilized.
The first four models (model k-€, model k-, SST k-, LES model)
use the eddy viscosity equation while the second model is the RSM
model using the Reynolds stress transport equation. Thus the supe-
riority of each model will complement each other in getting a pic-
ture of the pattern of fluid flow distribution in the test chamber.
The compilation results of turbulence models are used to deter-
mine the exact and the optimal position of the sample inside the
test chamber or could be a reason for changing the geometric
structure of the wind tunnel.

2. Turbulence models

The airflow is modeled with several turbulence models to
ensure the precision 0@ wind tunnel that will be made later.
The model includes the standard k-€, k-m standard, SST k-t model,
RSM model, and LES model. The intensity of turbulence is obtained
from strong turbulence and is a statistical process in the form of

i = ‘,.ffﬁ'l_{?iz, then Equation (1) is obtained as the intensity of tur-

bulence TI without dimensions [ 18],

Tl = (i';. ;‘ﬁ.) (1)

while u; is average velocity, u',- is velocity fluctuation, and for TI < 1%
as low turbulence and TT = 10% as fully turbulence.

Airflow turbulence analysis in this design study was carried out
based on the form of Equations 2 and 3 or also called the Navier
Stokes transport equation [19],
Conservation of mass : r}_p - ,d
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2.1. Standard k-e model

The standard k-e model will determine the amount of turbulent
kinetic energy k (energy transport) and the kinetic dissipation rate
€ as a represent of turbulence diffusion according to the Boussinesq
hypothesis written in Eq. (4) [20].

g .. 7} Ly ik
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ay ) X
4)
Assuming the Reynolds number is very large or applies absolute
turbulent assumptions (full turbulent), then factor¥y, by
Yu= Zpeﬁ in Equation (4] can be ignored for incompressible flu-
ids. This model has robustness for describing airflow far from the
wall.

2.2. Standard k-t model

%s model consists of the factor k as %Julent kinetic energy
and factor w as the exact r of dissipation (spedific dissipation
rate) [21,22], where ¢ = €/k. Turbulent kinetic energy and the rate
of dissipation are certainly written in the form of Eq. (5) [20].

g —_— a G —ﬂtw o i T p ok dm
E?’t{"' % PUiO ) =t f Uf}xj_”' df_or‘}xj- ax;
9 kY &
i (u+ r“&)f—u (5)
i w J ax; '

This model offered accuracy of prediction for free shear flows.
2,3,gk-m model

The SST k- model (Eq. (6)[20]) tends to model turbulence near
the wall as a consequence of the friction between the fluid and the
field it passes at the high price of the Reynolds number.

i 7] i i

7 (par) + X, (pe) = f’:’—‘{u: (r o fhj) + Gy — Yo+ D+ 5, (6)
With, turbulent

Gi = min{Gy, 10pf'ke) and  kinetic energy dissipation k is

Yi = pfi'keo. S is the amount of flow strain rate in the tunnel.

kinetic energy produced is

2.4. RSM model

The basic concept of the RSM mael (Equation (7) [23]) is the
same as the eddy viscosity model (k-e model, k- model, SST k-
s model), but the pressure-strain is immediately partially
resolved.
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2.5. LES model

The LES model uses a filter that is passing a small turbulence
energy to the average and modeling it. This method is called
subgrid-scale modeling, calculated based on Equation 8 [20] with

SGS viscosity :j—{: -0.

by,
o owy _ 1ap 9 [ow
ot ey M e T | T
3. CFD method

The computational method uses commercial Ansys Fluent
Release 15. The airflow is assumed friction absence because the
test chamber material is from acrylic. In spite of this, the flow is
chosen to move in three dimensions, inc@Wpressible with the flow

in the tunnel considered fully-turbulent. Although the geometry of
the wind tunnel is symmetrical so that the meshing is sufficiently
structured, but to get the fluctuation of air flow in the wind tunnel
can be guaranteed then the unstructured meshing is chosen

(Fig. 2). The use of unstructured meshing sacrifices CPU speed in
processing data, but the accuracy of the simulation can be guaran-
teed. The transient flow form was chosen in the simulation because
of the wind tunnel section (contraction chamber and diffusion
chamber) that did not have a standard ratio. With transient mode,
the possibility of 3D air movement in the wind tunnel can be

anticipatq g
Some turbulence models used are the standart k- € model, k-0
model, 85T k-co model, RSMs model, and LES model. The k-e model
leads to examine near the with a standard wall function
(30 < y* (300), whereas the k-co model is assigned to set about
the standard wall function (y* (10). However, a lo ynolds num-
ber correction pertain to SST k-t model, then the k-co model is
a combination of the advantages of the k- mc@ in delineating
the phenomena that come about near the wall with the stability
of the k-e model in defining a flow in conditions far from the wall.
The RSM model has known as a model of high Reynolds number
because the pressure strain effect and this model were used to
illustrate separation flow, flows with recirculation zone which
could ascend in simulation |24 . Particularly in the average move-
ment of air flow velocity will be divided into three, which is the
occurrence of compression, acceleration and then experiencing
expansion.

The pressure and momentum equation is carried off using the
SIMPLE algorithm (Semi Implicit Method for Pressure-Linked
Equations). This scheme as an alternative to compensate for the
computational disadvantage by using specific turbulence models.

The contracting room control variable against the passageway is
the dimension of input geometry in the form of area, length of con-
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Fig. 3. Corner 2D Meshing.

traction space, area of output hole and contraction ratio. The wind in m?[25]. Assuming a minimum wall function EE¥" is 30, the wall
tunnel meshing in Fig. 2 is arranged close to 10~ m with a tolerance spacing is around 0.28 mm and applies to the k-€ model and the
of 0.06 m resulting in ~ 10° grids and 198,387 nodes and its used RSMs model. While the other models are assumed to have the
for all models. Thus capturing turbulent conditions near the wall same wall function as the two models above, because these values
represented by y~ requires special attention. Mesh density and are still in the log wall region (Fig. 3).

mesh structure affect this requirement and some of it has been

explained in the previous. 4. Boundary conditions
The relationship of the initial number of cells to the size o
wind tunnel can be determined by the relationship given by N = The reference pressure used is the normal room pressure or sta-

44,400 = V38 where N is the number of cells and V is the volume tic pressure po = 101325 Pa (760 mmHg) with the airflow velocity

!I!-
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value computed from mathematical calculations (Bernoulli conti-
nuity law). Then, the results are used as input in the simulation
to obtain a velocity distribution model in the wind tunnel, espe-
cially the variation of airflow in the t@chamber. In this study, 2
desired airflow data in the test room are 10 m/s, and 20 m/s.

The wind tunnel geometry in this study has the length L is
5.628 m, the cross section length is 1.245 m square and the edges
are curved with radius 0.250 m, so the wind tunnel volume is
4,60 =« 10° m? and surface area is 2.13 x 10° m? (Fig. 1). The cross
section of the output gap of the diffusion chamber is determined to
equal the area of the cross section of the gap entering the contrac-
tion chal&r. Whereas the fan is located after the diffusion cham-
ber has a diameter of 1250 m, has a maximum flow rate of
8.75 m’[s.

5. Results and discussion

Some research has been carried out to design and investigate
wind tunnels, but they are more focused only on the scheming con-
traction parts [4,26-28|. There are also reviews of the wind tunnel
that only want to provide a general description of the distribution
of airflow in the wind tunnel [29| t@Brove the laminar flow protec-
tion and there is no review on how to determine the position of the
test object in the test chamber. The four sides of the wind tunnel in

this analysis are curved on their side { 50 cm), distinguishing
them from the geometry of the wind tunnel in another review
where the tested wind tunnel has angles on all four sides.

The velocity contour patterns achieved in the test section vary
for each turbulence model as shown in Fig. 4. The initial velocity
of 3.3 m/s Fig. 4 is also different in velocity distribution contours
for the initial velocity given at 6.6 m/s (Fig. 5). The pattern of veloc-
ity distribution in the test section shows different contours, both in
terms of velocity and the turbulence model used. Model k-e (Fig. 4.
A) with arrow a shows the direction of the curvature trending into
the test chamber due to axial flow and the tilt of the wall of the 5°
diffusion chamber. This phenomenon is increasingly clear with
increasing velocity in the test section (Fig. 5), the five models tend
to occur backflow when entering the diffusion chamber. Symptoms
of the boundary-field layer occur but do not appear to cause the
separation flow, because the boundary-plane layer is pushed
away until it approaches the end of the diffusion chamber
{a s band c).

ith an initial velocity of 3.3 m/s, a velocity corresponding to
theFftimate required in the tunnel test chamber is 10 m/s. Because
the velocity of the fluid in the test chamber is expected to be in the
range of 10 m/s — 20 m/s. The ovefglll model consistently displays
the velocity in the test section 10 m/s when the initial velocity is
3.3 m/s. Even the area covered by the red gradation exceeds the

Fig. 5. The sequential speed distribution of each model !-e {a), k-co (b), RSM (), SST k-0 (d), LES {e) for Uy = 6.6 mfs.

ne hittps:/{doi.org10.1016/j.ast
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E section ie the output of the test chamber and the input for the
diffusion chamber. Arrows b and c display a layer of boundary
mis pushed away from the test chamber and not as large as
shown in Fig. 5. SST model (Fig. 4.D) is shown in reddish-

orange gradations for velocity of 10 m/s. The average velocitm

the test section is given by the k-e and k- models which are
9.98 m/Efnd 10.02 mfs compared to the other three models. The
average velocity in the test chamberis 10.0 m/s, even the area cov-
ered by the red gradation exceeds the E section ie the output of the
test chamber and the input for tt ffusion chamber. There are
similarities in the character of the k-t model with the model
lk-c» model which is the tendency to round out the flow pattern
when leaving the test section and enter the diffusion section. This
similarim;n be understood as the definition of both models,
namely turbulent kinetic energy k and specific rate of dissipation
.

The phenomenon of the boundary-field layer in the test section
does not affect the pattern of fluid movement in the test chamber.
This condition is caused by the large freestream velocity or the
high Reynolds number in the test chamber suppresses the poten-
tial for increasing the thickness of the layer. Likewise, the suspicion
of the influence of the asymmetry of space using unstructured
mesh does not occur like ripples in a wind tunnel. The boundary-
plane layer in Fig. 5 is pushed away t:nw diffuser area but does
not affect the uniformity of fluid flow in the test chamber. When
the fluid moves rapidly in the test chamber and when it passes
through tﬂ;oss-section E as the transition area, the flow velocity
decreases with the hydraulic diameter Dy, of the diffusion chamber
increasing and is characterized by a slope of 5° towards the plane
of the test chamber. Slowing velocity and the slope effect of the dif-
fusion chamber produce trending backflow against the main-
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Fig. 6. Graphic Uy = 33 mfs {a) and Uy = 6.6 m/s {b) of fifth turbulence models.

stream. Thus a current is created due to the curvature effect or
the curvature effect of the fluid pass field. All models of turbulence
and the results of mathematical calculations show the velocity of
the fluid more or less the same in the contraction section, but then
the tendency changes when it has passed through the contraction
section.

The simulation results of the distribution of airflow in the con-
traction area in this study shovmir compatibility with the review
conducted by Abdelhamed [4| using the SST k-w model. The ratio
of the air velocity to the distance amplified in the test chamber
indicated by the previous report can also be compared with the
results of this research. Removing the sharp angle geometry on
all four sides of the wind tunnel to avoid the possibility of eddy
flow, which is the simulation results from the cross-section (Figs. 4
and 5) do not show differences in the shape of distribution with
Rodriguez Lastra [28].

The thickening appearance in Fig. 5 as a mechanism for increas-
ing the boundary-field layer thickness and the sensitivity of the k-
® model (Fig. 5.B) towards freestream seems to indicate that the
freestream flow pushes the fluid to form a boundary layer becomes
longer and thickens at the end diffusion. Model k-w has the advan-
tage of modeling boundary-field layers caused by adverse pressure
gradients and by eliminating the damping function, the model is
stronger in constructing the flow around n: wall [30].

Another parameter in determining the position of the test sam-
ple in the test room is the presence of visual data on the pressure
distribution. Visual data distribution of the fifth static pressure tur-
bulence model in wind tunnels at initial velocity of 3.3 m/s and
6.6 m/s (Fig. 7). The color stick shows the blue gradation is the low-
est pressure in the tunnel, and the red gradation is the highest
pressure. The five models of the two velocity show that the pres-
sure decreases when entering the test section then increases when
leaving the test section, although the pressure on each model
varies. 7

At the average velocity of the test chamber 10 m/s, the magni-
tude of the pressure is the k-e model giving the pressure value in
the test section is =61.6 Pa, the k-m model is — 64.4 Pa, the RSM
model is -56.8 Pa, SST k-m is — Pa and the LES model is -
62.8 Pa. Whereas for the average velocity of 20 m/s the model in
the test section obtained for the k-e model is

— 217.89 Pa, the model k-m is — 231.22 Pa, the RSM model
is — 231.22 Pa, the SST k- model is — 230.2 Pa and the LES model
is 221.0 Pa.

The description of pressure dispersions in wind tunnels has a
pattern that is consistent with Ahmed D.E, et al. essay [31],
although Ahmed D.E. only takes the profile of half the wind tunnel.
The results of the static pressure values differ but the pressure con-
tour characteristics have a close visualization. The dominance of
the blue gradations in the test section can be seen starting from
cross-section B to cross-section E. The cross-section A has a pres-
sure above the cross-sectional pressure values B, C, D, and E, except
for the k-total model whose overall cross-section is dominated by
blue (lowest pressure). S:ﬂlat to position objects in the test sec-
tion is right when placed In the area between cross-section B and
cross-section E, taking into account the uniformity of velocity
and pressure that occurs in the wind tunnel test chamber. The
cross-sectional area A has a maximum pressure distnution but
in that area, there are still fluctuations in pressure or not entirely
homogeneous so that positioning the specimen in the cross-
sectional area will not be optimal because non-uniform pressure
in the test chamber is one 4“13 disturbances. Then determining
the position of the sample in the area between cross-section B
and cross-section E is correct and optimal.

The negative gradient by the graph of the turbulence intensity
of the five turbulence models is shown in Fig. 8. If the velocity
curve in Fig. 6 is the maximum curve and tends to be uniform, then
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Fig. 7. Pressure distribution at Uy = 3.0 m/s (a) dan Uy = 6.6 m/s (b).

the turbulence intensity curve of the five CFD method models var-
ies. The LES model curve has the largest gradient with a sharp
slope, except the other four turbulence models, form a gentle curve
(small curve gradient). The high-intensity gradient of turbulence in
the LES model has an impact on the level of turbulence produced in
the test chamber, which is 16.3%. While the turbulence model
which shows a small intensity value is given by the model k-e with
the intensity of turbulence in the test chamber is 0.8%. The turbu-
lence rate of other mo , namely the k-c» model is 13.5%, the RSM
model is 3.5% and the k-» model is 14.6%.

The turbulence intensity graph in Fig. 8, both at velocity of
10 m/s or 20 m/s, s mixed results between each model. The
LES model gives the value of turbulence intensity in the testsection
between 5.1% — 10.9%, the RSM model whose curves tend to be flat
gives turbulence values between 2.3% — 2.9% in the test chamber
and is the model with the smallest turbulence intensity compared
to other models. The intensity value of turbulence by other models
in tlffP%st chamber is 6.9% — 8.1% by the k-w model, 2.6% — 3.2% by
the k-e model S0 the SST k-w 11.40%. The RSM model has an
intensity value that is quite clos@the k-e model and the turbu-
lence intensity curve gradient of this model is also as small as the

k-e m| because of a more flat curve. The turbulence intensity
curve of the SST k-t model has th@ttest tendency compared
to the two previous curve models, the RSM model and the k-e
model. But overall, the direction of the turhula:e intensity curve
of the five turbulence models is negative. The k-e model with the
smallest turbulence intensity has a velocity range in the test cham-
beris 18.14 m/s - 18.79 m/s while the LES model which has a high
turbulence gradient, the velocity range is shown in the test cham-
ber is 18.15 m/s - 18.67 my/s.

6. Conclusion

Evaluation of the use of CFD simulations in wind tunnel designs
gives reliable results, especially if the results are compared to pre-
vious studies. Each investigation uses a different model but the
results obtained are not much different, especially in the utilization
of parameters and methods that have similarity characteristics.
This condition is important for some turbulence models in order
to get a comprehensive concept of air flow.
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Fig. 8. Turbulence Intensity Chart of five turbulence models on U = 10 m/s {a) dan
U =20 mfs (b).

The turbulence level of the five models of the 2 ouqq.;elocity
in the test room, for velocity of 10 m/s in the test space such§Efhe
k-e model is 3%, the k-« model is 14%, the RSM model is 4%, SST k-
® is 15% and the LES model is 18%. For velocity of 20 m/s, the k-e
maodel is 3.2%, the k-o model is 8.1%, the RSM model is 2.9%, the
SST k-e» is 11.4% and the LES model is 10.9%. Then the intensity
of turbulence in wind tunnel test sections is still high because
some models provide values above 10%, although there are symp-
toms of decreasing the value of turbulence intensity as the flow
velocity increases in the wind tunnel. The ideal turbulence inten-
sity has not been obtained from this simulation which is below
1%, so analysis of wind tunnel design is needed again, especially
in the contraction space. Some adjustments are needed to the
geometry and design of the contraction chamber structure, but it
is also possible in other spaces such as diffusion spaces.

The velocity dis@lbution in the test section is more evenly dis-
tributed, as for the initial velocity of 3.3 m/s, the velocity in the k-
mod del test section shows the maximum velocity ac| edis
9.98%1‘]13 -0 model is 9.98 m/s, RSM model at 10.095. the

le-e» model is 11.2 mfs and the LES model is 10.2 m/s. At the
initial velocity of 6.6 m/s the maximum velocity obtained from
the simulation result is that the model k-€ is 19.1 m/s, the model
k-w is 19.0 m/s, the RSM model is 18.9 m/s, 55T k- is 18.9 m/s
s and LES are 19.1 m/s.

The simulation results in the form of velocity distribution con-
tours and pressure distribution within the wind tunnel test room
show that the optimal position of the test specimen is between
the B and D cross-sections. The RSM model that is superior in mod-
eling the interaction between strain and stress components in fluid
flo es not show presence boundary-plane layer and followed
by the SST k- model and the LES model. The RSM model, similar

to the k-e model, shows a low level of turbulenan the test cham-
ber. Whereas the other models, namely the LES model, the 55T k-m
model, and the k- model provide the value of the turbulence level
above the two models,
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